Exploration quantum steering, nonlocality and entanglement of two-qubit X-state in structured reservoirs

نویسندگان

  • Wen-Yang Sun
  • Dong Wang
  • Jia-Dong Shi
  • Liu Ye
چکیده

In this work, there are two parties, Alice on Earth and Bob on the satellite, which initially share an entangled state, and some open problems, which emerge during quantum steering that Alice remotely steers Bob, are investigated. Our analytical results indicate that all entangled pure states and maximally entangled evolution states (EESs) are steerable, and not every entangled evolution state is steerable and some steerable states are only locally correlated. Besides, quantum steering from Alice to Bob experiences a "sudden death" with increasing decoherence strength. However, shortly after that, quantum steering experiences a recovery with the increase of decoherence strength in bit flip (BF) and phase flip (PF) channels. Interestingly, while they initially share an entangled pure state, all EESs are steerable and obey Bell nonlocality in PF and phase damping channels. In BF channels, all steerable states can violate Bell-CHSH inequality, but some EESs are unable to be employed to realize steering. However, when they initially share an entangled mixed state, the outcome is different from that of the pure state. Furthermore, the steerability of entangled mixed states is weaker than that of entangled pure states. Thereby, decoherence can induce the degradation of quantum steering, and the steerability of state is associated with the interaction between quantum systems and reservoirs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of random telegraph noise on entanglement and nonlocality of a qubit-qutrit system

We study the evolution of entanglement and nonlocality of a non-interacting qubit-qutrit system under the effect of random telegraph noise (RTN) in independent and common environments in Markovian and non-Markovian regimes. We investigate the dynamics of qubit-qutrit system for different initial states. These systems could be existed in far astronomical objects. A monotone decay of the nonlocalit...

متن کامل

Bell’s Nonlocality Can be Detected by the Violation of Einstein-Podolsky-Rosen Steering Inequality

Recently quantum nonlocality has been classified into three distinct types: quantum entanglement, Einstein-Podolsky-Rosen steering, and Bell's nonlocality. Among which, Bell's nonlocality is the strongest type. Bell's nonlocality for quantum states is usually detected by violation of some Bell's inequalities, such as Clause-Horne-Shimony-Holt inequality for two qubits. Steering is a manifestati...

متن کامل

Decoherence effects on quantum Fisher information of multi-qubit W states

Quantum fisher information of a parameter characterizing the sensitivity of a state with respect to parameter changes. In this paper, we study the quantum fisher information of the W state for four, five, six and seven particles in decoherence channels, such as amplitude damping, phase damping and depolarizing channel. Using Krauss operators for decoherence channels components, we investigate t...

متن کامل

Paradoxes of measures of quantum entanglement and Bell's inequality violation in two-qubit systems

We review some counterintuitive properties of standard measures describing quantum entanglement and violation of Bell’s inequality (often referred to as “nonlocality”) in two-qubit systems. By comparing the nonlocality, negativity, concurrence, and relative entropy of entanglement, we show: (i) ambiguity in ordering states with the entanglement measures, (ii) ambiguity of robustness of entangle...

متن کامل

Thermal effect and role of entanglement and coherence on excitation transfer in a spin chain

We analyze the role of bath temperature, coherence and entanglement on excitation transfer in a spin chain induced by the environment. In Markovian regime, we show that coherence and entanglement are very sensitive to bath temperature and vanish in time in contrary to the case of having zero-temperature bath. That is while, finding the last qubit of the chain in excited state increases by incre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017